FORCE FIELD STUDIES OF SOME TRIFLUOROMETHYL- AND TRICHLOROMETHYL-MERCURY(II) COMPOUNDS

J. MINK

Institute of Isotopes of the Hungarian Academy of Sciences, 1525 Budapest (Hungary)
and P.I. GOGGIN
Department of Inorganic Chemistry, The University, Bristol BS8 IBS (Great Britain)
(Received November 5th, 1982)

Summary

Force constants of $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right],\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right],\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I) and $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ have been calculated using a valence force field and wavenumber data from solutions. The potential energy distributions show substantial mixing between the symmetrical stretching and umbrella deformation coordinates of the trihalomethyl groups. The high degree of mixing of HgC and HgX stretching coordinates in $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{Br}\right]$ and $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{I}\right]$ accounts for the discontinuous frequency and intensity trends in the $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ series.

The results are discussed in comparison with methylmercury and other trifluoromethyl systems.

1 Introduction

In the last 30 years there has been a substantial amount of work on the synthesis of trifluoromethyl organometallic compounds, but relatively little on corresponding trichloromethyls. For mercury(II) CF_{3} and CCl_{3} derivatives are well established, and for compounds $\left[\mathrm{Hg}_{\left(\mathrm{CY}_{3}\right)_{2}}\right]$ and $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right](\mathrm{Y}=\mathrm{H}, \mathrm{F}$ or $\mathrm{Cl} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$ vibrational spectra have been studied in detail [e.g. references I-3].

In the case of methylmercury compounds we have performed normal coordinate calculations $[1,2]$ and to gain an insight into the effect of the electronegativity of substituents on the methyl group we report comparable force field studies for the trihalomethyl compounds.

Brauer et al. have also recently studied $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right][4]$ using a valence force field, as well as $\alpha-\left[\mathrm{Hg}_{\left(\mathrm{CF}_{3}\right)} \mathrm{N}_{3}\right]$ and $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{NCO}\right][5]$, while Eugen has investigated the force field for $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CF}_{3}\right)\right]$ and its deuterated analogue [6]. Hase [7] used the data of ref. 3 in a Urey-Bradley approach but we do not understand the numerical
values reported which bear no resemblence either to our own calculations or to published work on any other CY_{3} systems.

Force constant calculations

Tetrahedral angles about carbon and linear bonding about mercury have been assumed for $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$ molecules. The CF and CCl bond lengths have been taken as 134 [5] and 177 [6] pm respectively. The CHg and HgX bond lengths have been assumed to be the same as used for calculations on corresponding methylmercury halides [2]. For $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right.$] we have used the exact gas phase parameters determined by Oberhammer [8]. The HgC bond length for $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$ has been assumed to be 209 pm . Approximate descriptions and symmetry properties of the fundamental vibrational modes are given in Table 1. Wavenumbers from the study of solutions [3] were used as the goal for the force field refinements.

The internal and symmetry coordinates used follow those adopted for $[\mathrm{Hg}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right][1]$ and $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$ [2]. The procedures used for calculating the G matrices and refining the force constants have been outlined previously [9,10]. Initial force constants were taken from previous calculations for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right][4],\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}\right]$ [1], $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$ [2] and HCCl_{3} [11-13].

For the CF_{3} derivatives, refinement gave satisfactory agreement with our experimental data. However, for the CCl_{3} compounds the force field from HCCl_{3} (F_{0}^{\prime}) was not very successful in yielding an appropriate force constant matrix F_{0} for further refinement, and the following procedure was adopted. First the $G F_{0}^{\prime}$ matrix was diagonalised (eq. 1).
$\tilde{L}_{0} G F_{0}^{\prime} L_{0}=\Lambda$
Using the inverse eigenvector matrix and the diagonal matrix of experimental values, $\Lambda_{\text {exp }}$, the F_{0} matrix can be obtained (eq. 2).
$\tilde{L}_{0}^{-1} \Lambda_{\text {exp }} L_{0}^{-1}=F_{0}$
For the $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right)_{2}\right]$ molecules there are 13 experimental frequencies and we have attempted to refine 11 force constants with four others constrained. In his HOFF treatment of CH_{3} derivatives, Mills [14] proposed criteria which, applied to the

TABLE 1
DISTRIBUTION OF FUNDAMENTAL VIBRATIONS FOR $\left[\mathrm{Hg}_{(}\left(\mathrm{CY}_{3}\right)_{2}\right]$ and $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$

Approximate		$\left[\mathrm{Hg}_{\left.\left(\mathrm{CY}_{3}\right)_{2}\right]}\right.$			$\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$	
vibrational description	$a_{1 \mathrm{~g}}$	$a_{2 u}$	e_{8}	e_{u}	a_{1}	e
CY_{3} sym. str.	ν_{1}	ν_{5}			ν_{1}	
CY_{3} asym. str.			ν_{8}	ν_{11}		ν_{5}
CY_{3} sym. def.	ν_{2}	ν_{6}			ν_{2}	
HgC str.	$\boldsymbol{\nu}_{3}$	$\boldsymbol{\nu}_{7}$			ν_{4}	
CX_{3} asym. def.			ν_{9}	ν_{12}		ν_{6}
CY_{3} rock			ν_{10}	ν_{13}		ν_{7}
HgC_{2} bend				ν_{14}		
HgX str.					ν_{3}	
CHgX bend						ν_{8}

TABLE 2
FORCE CONSTANTS FOR $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ AND $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$ MOLECULES (UNITS $10^{2} \mathrm{~N} \mathrm{~m}^{-1}$).

Force constant	Common atom(s) of internal coordinates	$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$	$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$
$K(\mathrm{CX})$	-	5.093	
$K(\mathrm{CHg})$	-	2.217	2.681
$F(\mathrm{CX}, \mathrm{CX})$	C	0.570	2.173
$F(\mathrm{CHg}, \mathrm{CHg})$	-	0.230	0.523
$H(\mathrm{XCX})$	-	0.865	0.135
$H(\mathrm{XCHg})$	-	0.407	0.388
$H(\mathrm{CHgC})$	Hg	0.129	0.291
$h^{\prime}(\mathrm{CHg}, \mathrm{XCHg})^{a}$	$\mathrm{C}-\mathrm{X}$	0.185	0.088
$h(\mathrm{XCHg}, \mathrm{XCHg})$	Hg	0.037	
$f^{\prime}(\mathrm{XCHg}, \mathrm{HgCX})^{a}$	$\mathrm{C}-\mathrm{Hg}$	0.008	0.073
$f(\mathrm{XCHg}, \mathrm{CHgC})$	C	0.042	
constrained values	$\mathrm{C}-\mathrm{Hg}$	-0.016	
$F(\mathrm{CH}, \mathrm{CHg})$	$\mathrm{C}-\mathrm{X}$	0.098	
$h(\mathrm{CHg}, \mathrm{XCHg})$	$\mathrm{C}-\mathrm{X}$	0.426^{b}	0.179
$h(\mathrm{CX}, \mathrm{XCHg})$	0.056	0.115	
$f(\mathrm{XCX}, \mathrm{XCHg})$			0.208

${ }_{b}^{a} f^{\prime}$ and h^{\prime} interaction constants between two CX_{3} groups.
${ }^{b}$ see text.
present problem, should lead to:
$-F_{89}=F_{810}$
$F_{12}=\frac{1}{\sqrt{2}} F_{810}$
These two interdependent constraints were satisfactory for $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$, but for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ we could not find an acceptable set of force constants satisfying both eq. 3 and 4. For the latter we have used $-F_{89}=F_{810}=0.575 \times 10^{-8} \mathrm{~N} \mathrm{rad}^{-1}$ and $F_{12}=0.65 \times 10^{-8} \mathrm{~N} \mathrm{rad}^{-1}$; the value of $h(\mathrm{CF}, \mathrm{FCHg})=0.426 \times 10^{2} \mathrm{~N} \mathrm{~m}^{-1}$, given in Table 2, is derived from F_{810}.

The final non-zero force constants in internal coordinates are listed in Table 2, and a comparison of experimental and calculated wavenumbers in Table 3 together with the potential energy distribution of internal symmetry coordinates between the normal modes. The symmetry coordinate force constants for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ were virtually the same as those determined by Brauer et al. [4], the minor discrepencies being the result of slight differences for the Raman frequencies of ν_{1}, ν_{7} and ν_{8} in ref. 3. The force constants for $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$ are the first values obtained for a trichloromethylmetal derivative; the CCl stretching force constant is lower than that for CCl_{4} [15] or HCCl_{3} [13] and must be the result of the presence of the metal atom.

For $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$ molecules there are eight experimental frequencies and so eight force constants could be refined, with six others constrained. The relations corresponding to eq. 3 and 4 are $-F_{56}=F_{57}$ and $F_{12}=\frac{1}{\sqrt{2}} F_{57}$ respectively. To obtain
TABLE 3
EXPERIMENTAL AND CALCULATED WAVENUMBERS AND POTENTIAL ENERGY DISTRIBUTION (PED) FOR $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ AND $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$ (Point group $D_{3 d}$).

TABLE 4
FORCE CONSTANTS FOR $\left[\mathrm{Hg}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I$)$ AND $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ MOLECULES (UNITS $\left.10^{2} \mathrm{~N} \mathrm{~m}^{-1}\right)$

Force constant	Common atom(s) internal coordinates	$\left[\mathrm{Hg}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$			$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right]$	
		$\mathrm{X}=\mathrm{Cl}$	$\mathrm{X}=\mathrm{Br}$	$\mathrm{X}=\mathrm{I}$	$\mathrm{X}=\mathrm{Cl}$	$\mathrm{X}=\mathrm{Br}$
$K(\mathrm{CF}) ; \boldsymbol{K}(\mathrm{CCl})$	-	5.450	5.345	5.464	2.764	2.792
$K(\mathrm{CHg})$	-	2.221	2.097	2.001	2.209	1.969
$\boldsymbol{K}(\mathrm{HgX})$	-	2.556	2.170	1.789	2.038	2.119
$F(\mathrm{CF}, \mathrm{CF}) ; \mathrm{F}(\mathrm{CCl}, \mathrm{CCl})$	C	1.024	0.944	1.081	0.612	0.631
$H(\mathrm{FCF}) ; \boldsymbol{H}(\mathrm{ClCCl})$	-	0.839	0.835	0.833	0.396	0.386
$\boldsymbol{H}(\mathrm{FCHg}) ; \boldsymbol{H}(\mathrm{ClCHg})$	-	0.427	0.436	0.425	0.197	0.183
$\mathrm{H}(\mathrm{CHgX})$	-	0.156	0.145	0.133	0.136	0.151
$f(\mathrm{FCHg}, \mathrm{FCHg}) ; ~ f(\mathrm{ClCHg}, \mathrm{ClCHg})$	C-F, $\mathrm{C}-\mathrm{Cl}$	0.145	0.173	0.163	0.055	0.072
Constrained values						
$F(\mathrm{CHg}, \mathrm{HgX})$	Hg	0.160	0.100	0.060	0.220	0.210
$F(\mathrm{FC}, \mathrm{CHg}) ; ~ F(\mathrm{ClC}, \mathrm{CHg})$	C	0.271	0.271	0.271	0.150	0.150
$h(\mathrm{CHg}, \mathrm{FCHg}) ; ~ h(\mathrm{CHg}, \mathrm{ClCHg})$	$\mathrm{C}-\mathrm{Hg}$	0.146	0.146	0.146	0.111	0.171
$h(\mathrm{CF}, \mathrm{FCHg}) ; \mathrm{F}(\mathrm{CCl}, \mathrm{ClCHg})$	$\mathrm{C}-\mathrm{F}, \mathrm{C}-\mathrm{Cl}$	$0.373{ }^{\text {a }}$	$0.373{ }^{\text {a }}$	$0.373^{\text {a }}$	0.208	0.208
$f(\mathrm{FCF}, \mathrm{FCHg}) ; ~ f(\mathrm{ClCCl}, \mathrm{ClCHg})$	$\mathrm{C}-\mathrm{F}, \mathrm{C}-\mathrm{Cl}$	0.056	0.056	0.056	0.032	0.032
$f(\mathrm{FCHg}, \mathrm{CHgX}) ; ~ f(\mathrm{ClCHg}, \mathrm{CHgX})$	$\mathrm{C}-\mathrm{Hg}$	-0.005	-0.005	-0.005	-0.016	-0.024

[^0]TABLE 5
EXPERIMENTAL AND CALCULATED FUNDAMENTAL WAVENUMBERS AND POTENTIAL ENERGY DISTRIBUTION FOR [Hg(CF $\left.\left.]_{3}\right) \mathrm{X}\right]$ AND
$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right]$ $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right]$

	a_{1} species							e species						
		obs	calc.	PED $\times 100$					obs.	calc.	PED $\times 100$			
				s_{1}	s_{2}	s_{3}	s_{4}				s_{5}	s_{6}	s_{7}	s_{8}
[$\mathrm{Hg}_{(2 \mathrm{CF}}^{3}$) Cl$]$	ν_{1}	1130	1131	64	45	19	0	ν_{5}	1093	1093	100	25	5	2
	ν_{2}	723	723	39	41	11	0	ν_{6}	526	526	11	75	1	1
	ν_{3}	250	250	0	17	69	3	ν_{7}	240	240	1		115	2
	ν_{4}	355	355	0	0	4	97	ν_{8}	96	94	0	1	9	117
[$\mathrm{Hg}_{\left.\left(\mathrm{CF}_{3}\right) \mathrm{Br}\right]}$	ν_{1}	1125	1125	60	30	19	0	ν_{5}	1088	1088	101	25	5	2
	ν_{2}	724	723.5	43	39	8	0	ν_{6}	525	525	11	75	1	0
	ν_{3}	277	275	0	7	41	51	${ }^{7}$	237	230	2	3	119	3
	ν_{4}	216	217.7	0	8	36	48	ν_{8}	73	70.4	0	1	9	118
$\left.\left[\mathrm{Hg}_{(} \mathrm{CF}_{3}\right) \mathrm{I}\right]$	ν_{1}	1121	1121	68	46	14	0	ν_{5}	1085	1085	29	94	3	2
	ν_{2}	717	722	35	47	9	0	ν_{6}	524	524	89	9	2	3
	ν_{3}	256	257	0	8	50	34	ν_{7}	230	230	6	0	110	8
	ν_{4}	176	178	0	3	31	66	ν_{8}	60	71	4	0	9	89
$\left[\mathrm{Hg}_{\left.\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]}\right.$	ν_{1}	780.5	780.6	48	43	44	0	ν_{5}	717	717	36	91	10	4
	ν_{2}	396	394	54	20	16	0	ν_{6}	277	227	87	12	6	1
	ν_{3}	177		0	41	44	0	ν_{7}	156	156	0	2	99	10
	ν_{4}	350	351	0	0	1	100	ν_{8}	83	85	5	1	10	85
$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Br}\right]$	ν_{1}	773	773	51	46	46	0	ν_{5}	714	714	36	91	10	4
	ν_{2}	391	393.5	51	24	18	0	y_{6}	275	275	88	11	8	1
	ν_{3}	166	168.5	0	34	36	10	ν_{7}	152	153	1	2	103	10
	ν_{4}	244	247	0	4	9	91	p_{8}	63	64	5	1	8	86

F_{57} we used Torkington's method [16] of constructing ellipses relating diagonal and off-diagonal terms. Plots of F_{55} and F_{77} against F_{57} gave minima for the diagonal terms and. indicated the value $-F_{56}=0.37 \times 10^{8} \mathrm{~N} \mathrm{rad}^{-1}$ for $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)\right.$ $\mathrm{Cl}]$. For $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{Cl}\right]$ this method gives $-F_{56}=0.50 \times 10^{-8} \mathrm{~N} \mathrm{rad}^{-1}$, slightly lower than for the corresponding term (F_{89}) used for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$. The other related diagonal force constants, F_{66} and F_{88}, did not display minima with $-F_{56}$ in the range $0-1 \times 10^{-8} \mathrm{~N} \mathrm{rad}^{-1}$. In the same way as for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$, we could not fix a set of force constants for the $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ molecules which satisfied the two relationships involving F_{57}. The value we quote, $h(\mathrm{CF}, \mathrm{FCHg})=0.373 \times 10^{2} \mathrm{~N} \mathrm{~m}^{-1}$, arises from F_{56}, but for F_{12} we have used $0.47 \times 10^{-8} \mathrm{~N} \mathrm{rad}^{-1}$.

The force constants which gave the best fit for the $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$ molecules are given in Table 4. Table 5 gives the comparison between experimental and calculated wavenumbers, together with the computed potential energy distributions.

Discussion

For the trihalomethylmercury compounds, the potential energy distributions (Tables 3 and 5) show very strong coupling between CY_{3} symmetric stretching and umbrella deformation contributions to the normal modes. Indeed this is so marked that simple qualitative descriptions of e.g. ν_{1} and ν_{2} are inapplicable. For the trichloromethyl compounds the mode that would conventionally be classified as the symmetric deformation showed well resolved chlorine isotope features in the low temperature Raman spectrum [3], a clear experimental manifestation of the strong CCl stretching contributions.

In the CH_{3} and CD_{3} mercury systems the contribution from metal-carbon stretching to ν_{1} is very small [1] but increases strongly in the order $\mathrm{CH}_{3}<\mathrm{CF}_{3}<\mathrm{CCl}_{3}$. These two facets together demonstrate the extent to which the highest frequency totally symmetric modes are predominantly motions of the carbon atom.

The modes of the trifluoromethylmercury halides with predominantly $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{X}$ stretching character showed a specific behaviour. $\mathrm{In}\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{Cl}\right] \nu_{3}$ and ν_{4} are well separated in wavenumber and the $\mathrm{Hg}-\mathrm{Cl}$ stretching mode is essentially individual. In contrast, for the bromide (and to a lesser extent for the iodide) the coupling between ν_{3} and ν_{4} is very strong. Indeed the contributions from S_{3} and S_{4} are practically equal to ν_{3} and ν_{4} and this manifested itself in discontinuous frequency and intensity trends in the $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ series [3]: with the similarity of CF_{3} and Br masses, and of HgC and HgBr stretching force constants, ν_{3} and ν_{4} assume close correspondence to asymmetric and symmetric stretching modes of a linear YXY system. The features that might ordinarily be regarded as " HgC stretching" do not follow the usual trend $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ but the $K(\mathrm{CHg})$ force constants (Table 4) still do so.

For $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ the $K(\mathrm{HgX})$ force constants follow the usual order but in $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right] K(\mathrm{HgBr})$ is marginally greater than $K(\mathrm{HgCl})$, for which we can see no obvious explanation.

Strong coupling between CH_{3} rocking and CH_{3} asymmetric deformations was noted for $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}\right][1]$, but similar coupling in the trihalomethyl systems is much less marked.

Table 6 compares skeletal wavenumbers and force constants for systems with two methyl or substituted methyl groups. For $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$ and $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CD}_{3}\right)\right][6$,
TABLE 6
SKELETAL MODES AND FORCE CONSTANTS FOR DIMETHYL DERIVATIVES OF MERCURY

	Wavenumbers (cm^{-1})				Force constants $10^{2} \mathrm{~N} \mathrm{~m}^{-1}$			
	$\nu_{s}(\mathrm{CHgC})$	$\nu_{\mathrm{a}}(\mathrm{CHgC})$	$\delta(\mathrm{CHgC})$		$K(\mathrm{CHg})$	F(CHg, CHg)	$\boldsymbol{H}(\mathrm{CHgC})$	Ref.
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}\right]$	$520.4{ }^{\text {a }}$	$546.3{ }^{\text {a }}$	$153{ }^{\circ}$	gas	2.38	0.031	0.104	1
$\left.\left[\mathrm{Hg}_{(\mathrm{CD}}^{3}\right)_{2}\right]$	$475.1{ }^{\text {b }}$	$496.7{ }^{\text {b }}$	$141{ }^{\text {e }}$	gas				
$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$	$551\left(\mathrm{CH}_{3}\right)$	$241\left(\mathrm{CF}_{3}\right)$	115.3 d	gas	2.23($\left.\mathrm{CFF}_{3}\right)^{\mathrm{g}}$	0.07	0.083	6,17
$\left[\mathrm{Hg}_{\left.\left(\mathrm{CF}_{3}\right)\left(\mathrm{CD}_{3}\right)\right]}\right.$	$502\left(\mathrm{CD}_{3}\right)$	$241\left(\mathrm{CF}_{3}\right)$	$105.4{ }^{\text {d }}$	gas	$2.68\left(\mathrm{CH}_{3}\right)^{g}$			6,17
$\left[\mathrm{Hg}_{(}\left(\mathrm{CF}_{3}\right)_{2}\right]$	225	272	70	solution	2.22	0.230	0.129	this work
	224	271	68	solution	2.18	0.200	0.111	4
$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$	151	200	41^{f}	solution	2.17	0.135	0.088	this work

[^1]

Fig. 1. Correlation between HgC bond lengths (r_{0} or r_{e}) and stretching force constants. $1,\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}\right]$ $\left.[2,22] ; 2,\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right][2,22] ; 3,\left[\mathrm{Hg}_{\left(\mathrm{CH}_{3}\right)}\right)\right][2,23] ; 4,\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}\right][1,24] ; 5,\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right][8] ; 6$ and 6^{2} $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)\right][17]$.

17] the $\mathrm{Hg}-\mathrm{CH}_{3}$ or $\mathrm{Hg}-\mathrm{CD}_{3}$ stretches are slightly higher than the frequencies of the asymmetric stretches of the $\left[\mathrm{Hg}\left(\mathrm{CH}_{3} / \mathrm{D}_{3}\right)_{2}\right]$ derivatives but the $\mathrm{Hg}-\mathrm{CF}_{3}$ stretch is nearer to the mean value of the two stretching modes in $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$. On the basis of this behaviour we could expect a molecule $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$ to show its $\mathrm{Hg}-\mathrm{CCl}_{3}$ stretching vibration at about $170 \mathrm{~cm}^{-1}$. As the masses of the methyl substituents in $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right)_{2}\right.$] increases the separation of the symmetric and asymmetric stretching modes is proportionately greater. However, although for both the CF_{3} and CCl_{3} derivatives the $F(\mathrm{CHg}, \mathrm{CHg})$ interaction constants are much greater than for

TABLE 7
SKELETAL WAVENUMBERS FOR METHYL DERIVATIVES OF MERCURY(II), OBTAINED FROM SOLUTIONS

Compound	$\boldsymbol{p}(\mathrm{CHg})$	$\nu(\mathrm{HgX})$	$\delta(\mathrm{CHgX})$	Ref.
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}\right]$	553	335.5	135	2
$\left[\mathrm{Hg}\left(\mathrm{CD}_{3}\right) \mathrm{Cl}\right]$	506.8	334.8	125	2
$\left[\mathrm{HgBr}\left(\mathrm{CH}_{3}\right)\right]$	545.3	228	121	2
$\left[\mathrm{HgBr}\left(\mathrm{CD}_{3}\right)\right]$	499	227.8	110	2
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{I}\right]$	533	181	122	2
$\left[\mathrm{Hg}\left(\mathrm{CD}_{3}\right) \mathrm{I}\right]$	498.5	181	104	2
$\left[\mathrm{Hg}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right]}\right.$	559	378	124	25
$\left[\mathrm{Hg}_{\left.\left(\mathrm{CD}_{3}\right) \mathrm{CN}\right]}\right.$	510	384	115	25
$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{Cl}\right]$	250	355	96	
$\left[\mathrm{HgBr}\left(\mathrm{CF}_{3}\right)\right]$	277	216	73	
$\left[\mathrm{Hg}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{I}\right]$	256	176	60	
$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{N}_{3}\right]$	263	399	140	5
$\left[\mathrm{Hg}_{\left(\mathrm{CFF}_{3}\right) \mathrm{NCO}^{\text {a }}}{ }^{\text {a }}\right.$	264	404	140	5
$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]$	177	350	83	
$\left[\mathrm{HgBr}\left(\mathrm{CCl}_{3}\right)\right]$	168.5	247	63	

[^2]TABLE 8
FORCE CONSTANTS FOR METHYL DERIVATIVES OF MERCURY(II) [$\left.10^{2} \mathrm{~N} \mathrm{~m}^{-1}\right]$

Compound	$K(\mathrm{CHg})$	$K(\mathrm{HgX})$	$H(\mathrm{CHgX})$	$K(\mathrm{CH})$ $K(\mathrm{CF})$	Ref.
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}\right]$	2.55	2.08	0.097	4.87	2
$\left[\mathrm{HgBr}\left(\mathrm{CH}_{3}\right)\right]$	2.48	1.79	0.086	4.87	2
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{I}\right]$	2.38	1.55	0.076	4.86	2
$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right]$	2.45	2.38		4.77	25
$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{Cl}\right]$	2.22	2.57	0.156	5.45	5.34
$\left[\mathrm{HgBr}\left(\mathrm{CF}_{3}\right)\right]$	2.10	2.17	0.145	5.46	
$\left[{\left.\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{I}\right]}_{\left[{\left.\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{N}_{3}\right]}^{\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{NCO}\right]}\right.}^{\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]}\right.$	2.00	1.79	0.133	5.06	5
$\left[\mathrm{HgBr}\left(\mathrm{CCl}_{3}\right)\right]$	2.37	2.37	2.10	0.155	5.06

$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}\right]$ it is by far the largest in $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$. The $K(\mathrm{CHg})$ force constant decreases in the order $\mathrm{CH}_{3}>\mathrm{CF}_{3}>\mathrm{CCl}_{3}$ but by less than 10% between the first and last.

Figure 1 shows a fair linear correlation between mercury-carbon bond lengths (gas phase values) and stretching force constants. The distances shown for $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$ are r_{0} bond lengths from microwave measurements [22,23], for [$\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}$] [24] and $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ [8] are r_{e} distances from electron diffraction, and those for $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$ are the r_{0} and r_{s} values from microwave spectroscopy [17]. The approximate general correlation is much improved if it is viewed in terms of two series, $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$ and mercury dialkyls.

The skeletal frequencies of $\left[\mathrm{Hg}\left(\mathrm{CY}_{3}\right) \mathrm{X}\right]$ derivatives are summarised in Table 7,

Fig. 2. Relationship of HgC and HgX stretching force constants to the electronegativity of X in $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$.

Fig. 3. Relationship of CF stretching force constants to the first ionisation potential of X in $\mathrm{CF}_{3} \mathrm{X} . \mathrm{F}, \mathrm{CF}_{4}$ [29,30]; $\mathrm{H}, \mathrm{CF}_{3} \mathrm{H}[32,33] ; \mathrm{O}, \mathrm{O}_{\left(\mathrm{CF}_{3}\right)_{2}}$ [34]; $\mathrm{C},{\mathrm{C}\left(\mathrm{CF}_{3}\right)_{4}}[35] ; \mathrm{Se}, \mathrm{CF}_{3} \mathrm{SeX}(\mathrm{Cl}, \mathrm{Br})$ [37]; $\mathrm{S}, \mathrm{N}\left(\mathrm{SCF}_{3}\right)_{3}$ [38]; $\mathrm{Cl}, \mathrm{CF}_{3} \mathrm{Cl}[31] ; \mathrm{Br}, \mathrm{CF}_{3} \mathrm{Br}[31] ; \mathrm{P}, \mathrm{P}\left(\mathrm{CF}_{3}\right)_{3}$ [36]; $\mathrm{Ge},\left[\mathrm{Ge}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$ [39]; $\mathrm{Sn},\left[\mathrm{Sn}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$ [39]; Pb , $\left[\mathrm{Pb}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$ [39].
and force constants of primary importance in Table 8. Between CH_{3} and CF_{3} series the $\mathrm{Hg}-\mathrm{C}$ force constants fall by $13-16 \%$ whilst the $\mathrm{Hg}-\mathrm{X}$ force constants rises by $24(\mathrm{Cl}), 21(\mathrm{Br})$ and $15(\mathrm{I})$ \%. Figure 2 shows an almost linear correlation between the skeletal stretching force constants of $\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$ and the electronegativity of X , and similar relationships exist between these force constants and electron affinity or first ionisation potential of X as suggested previously for $\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$ [26].

An empirical relationship between HgX stretching force constants and bond

TABLE 9
CF STRETCHING FORCE CONSTANTS FOR CF ${ }_{3} X$ TYPE DERIVATIVES

Compound	X	$\begin{aligned} & K(C F) \\ & \left(10^{2} \mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	IP of X (eV)	Ref.
CF_{4}	F	6.97	17.4	29
		7.16		30
$\mathrm{CF}_{3} \mathrm{Cl}$	Cl	6.75	1301	31
HCF_{3}	H	6.48	13.6	32
		6.45		33
$\mathrm{CF}_{3} \mathrm{Br}$	Br	6.46	11.84	30
$\mathrm{O}\left(\mathrm{CF}_{3}\right)_{2}$	0	6.40	13.6	34
$\mathrm{C}\left(\mathrm{CF}_{3}\right)_{4}$	C	6.09	11.3	35
$\mathrm{P}\left(\mathrm{CF}_{3}\right)_{3}$	P	6.24	10.5	36
$\mathrm{CF}_{3} \mathrm{SeX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$	Se	5.82	9.75	37
$\mathrm{N}\left(\mathrm{SCF}_{3}\right)_{3}$	S	5.79	9.15	38
[$\left.\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$	Hg	5.06-5.46	10.43	this work
$\left[\mathrm{Ge}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$	Ge	5.50	7.9	39
[$\left.\mathrm{Sn}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$	Sn	5.38	7.34	39
$\left[\mathrm{Pb}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$	Pb	5.29	7.41	39

Fig. 4. Raman spectrum for solid $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]$ at 100 K in the range of ν_{2}. (a) observed spectrum, (b) isotope effect of in-phase vibration, (c) isotope effect of out-of-phase vibration.
dissociation energies of HgX 2 molecules [27] is found, of the form
$Q=105 K(\mathrm{HgX})+57.5$
where Q is in $\mathrm{kJ} \mathrm{mol}^{-1}$ and $K(\mathrm{HgX})$ is in $10^{2} \mathrm{~N} \mathrm{~m}^{-1}$. If this is used for organomercury halides the HgX bond dissociation energies are calculated to be:

	$\left[\mathrm{Hg}\left(\mathrm{CH}_{3}\right) \mathrm{X}\right]$	$\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{X}\right]$	$\left[\mathrm{Hg}\left(\mathrm{CF}_{3}\right) \mathrm{X}\right]$	$\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{X}\right]$
$\mathrm{X}=\mathrm{Cl}$	276	254	327	272
$\mathrm{X}=\mathrm{Br}$	245	249	285	280
$\mathrm{X}=\mathrm{I}$	220	217	245	

The force constants for the ethyl derivatives are taken from reference [28].
For trifluoromethylmercury derivatives the CF stretching force constants are in the range $5.06-5.46 \times 10^{2} \mathrm{~N} \mathrm{~m}^{-1}$, which is much less than for many other CF_{3} systems (Table 9) although similar to $\left[\mathrm{M}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]$ compounds ($\mathrm{M}=\mathrm{Ge}, \mathrm{Sn}$ or Pb) [39]. Lower values have been reported for the anion $\left[\mathrm{CF}_{3} \mathrm{BF}_{3}\right]^{-}\left(4.85 \times 10^{2} \mathrm{~N}\right.$ m^{-1}) [40] and for $\mathrm{CF}_{3} \mathrm{CN}\left(4.15 \times 10^{2} \mathrm{~N} \mathrm{~m}^{-1}\right)$ [41]. The values reported in the literature correlate quite well with the first ionisation potential of the element to which the CF_{3} group is allached (Fig. 3) but those of the mercury compounds are substantially lower than such a relationship implies. In the same way as K (CF) of [$\left.\mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}\right]$ is lower than in $\mathrm{CF}_{4}, K(\mathrm{CCl})$ of $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right)_{2}\right]$ is substantially lower than in $\mathrm{CCl}_{4}[15,29]$.

For solid $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]$, the Raman spectrum recorded at 100 K showed a six band multiplet near $400 \mathrm{~cm}^{-1}$ [3]. At natural abundance the CCl_{3} group gives rise to four chlorine-isotopic species with relative abundances $100\left(3^{35} \mathrm{Cl}\right) 97\left({ }^{37} \mathrm{Cl}, 2^{35} \mathrm{Cl}\right)$ $31\left(2^{37} \mathrm{Cl}, 1^{35} \mathrm{Cl}\right) 3\left(3^{37} \mathrm{Cl}\right)$. Using the force field given in Table 4 for $\left[\mathrm{Hg}\left(\mathrm{CCl}_{3}\right) \mathrm{Cl}\right]$ the wavenumber separation for the four isotopic species was calculated. With a 6.6 cm^{-1} correlation splitting the eight bands expected partially overlap to give the six peak pattern observed as a result of the joint isotope and lattice effect as shown in Fig. 4.

References

1 J. Mink and B. Gellai, J. Organometal. Chem., 66 (1974) 1.
2 P.L. Goggin, G. Kemeny, and J. Mink, J. Chem. Soc., Faraday Trans. II, 72 (1976) 1025.
3 P.L. Goggin, R.J. Goodfellow, K. Kessler, and A.M. Prescott, J. Chem. Soc., Dalton Trans., (1978) 328.

4 D.J. Brauer, H. Bürger, and R. Eujen, J. Organometal. Chem., 135 (1977) 281.
5 D.J. Brauer, H. Bürger, G. Pawelke, K.H. Flegler, and A. Haas, J. Organometal. Chem., 160 (1978) 389.

6 R. Eujen, J. Mol. Struct., 53 (1975) 1.
7 Y. Hase, An. Acad. Bras. Cienc., 51 (1979) 623.
8 H. Oberhammer, J. Mol. Struct., 48 (1978) 389.
9 J. Mink. G. Kemény, and L.M. Mink. Hung. Acad. Sci., Central Res. Inst. Phys., KFKI-76-47 (1976).
10 J. Mink, L.M. Mink, and Yu.A. Pentin, Vestnik Mosk. Gos. Univ., 3 (1971) 286.
11 A. Ruoff and H. Bürger, Spectrochim. Acta, A, 26 (1970) 988.
12 K.H. Schmidt and A. Müller, J. Mol. Spectrosc., 50 (1974) 115.
13 R.J.H. Clark, O.H. Ellestad, and R. Escribano, Mol. Phys., 31 (1976) 65.
14 I.M. Mills, Spectrochim. Acta, 19 (1963) 1585.
15 I.W. Levin and W.C. Harris, J. Chem. Phys., 57 (1972) 2715.
16 P. Torkington, J. Chem. Phys., 17 (1949) 357.
17 H. Günther, Personal communication.
18 J. Mink, D. Chem. Sci. Thesis, Institute of Isotopes of the Hung. Acad. Sci., Budapest, 1980
19 G. Kemeny, Ph.D. Thesis Institute of Isotopes of the Hung. Acad. Sci., Budapest, 1977.
20 J.R. Durig and S.C. Brown, J. Mol. Spectrosc., 45 (1973) 338.
21 L.A. Woodward, Spectrochim. Acta, 19 (1963) 1963.
22 W. Gordy and J. Sheridan, J. Chem. Phys., 22 (1954) 92.
23 G. Walls, D.G. Lister, and J. Sheridan, J. Chem. Soc., Faraday Trans. II, 71 (1975) 1091.
24 K. Kashiwabara, S. Konaka, T. Ijima, and M. Kimura, Bull. Chem. Soc. Jpn., 46 (1973) 407.
25 Y. Imai and K. Aida, J. Inorg. Nucl. Chem., 41 (1979) 963.
26 J. Mink and P.L. Goggin, J. Organometal. Chem., 156 (1978) 317.
27 T. Charnley and H.A. Skinner, J. Chem. Soc., (1951) 1921.
28 J. Mink and P.L. Goggin, J. Organometal. Chem., 185 (1980) 129.
29 W. Sawodny, Kémiai Közlemények, 46 (1976) 263.
30 A. Ruoff, Spectrochim. Acta, A, 23 (1967) 2421.
31 H. Bürger, K. Burzik, D. Bielefeldt, H. Willner, A. Ruoff, and K. Molt. Spectrochim. Acta, A, 35 (1979) 875.
R.W. Kirk and P.M. Wilt, J. Mol. Spectrosc., 58 (1975) 102.

33 A. Ruoff, H. Bürger, and S. Biedermann, Spectrochim. Acta, A, 27 (1971) 1377.
34 H. Bürger and G. Pavelke, Spectrochim. Acta. A, 31 (1975) 1965.
35 H. Bürger, R. Eujen, and R.J. Lagow, Spectrochim, Acta, A. 31 (1975) 777.
36 H. Bürger, J. Cichon, J. Grobe, and F. Höfler, Spectrochim. Acta, A, 28 (1972) 1275.
37 P.K. Wami and N.D. Patel, Can. J. Spectrosc., 20 (1975) 166.
38 H. Bürger, G. Pawelke, A. Haas, H. Willner, and A.J. Downs, Spectrochim, Acta, A, 34 (1978) 287.
39 R. Eujen and H. Bürger, Spectrochim, Acta, A, 35 (1979) 1135.
40 D.J. Brauer, H. Bürger, and G. Pawelke, Inorg. Chem., 16 (1977) 2305.
41 W.F. Edgell and R.M. Potter, J. Chem. Phys., 24 (1956) 80.

[^0]: ${ }^{a}$ See text.

[^1]: High resolution IR measurement [18]. ${ }^{b}$ Gas Raman measurement [19]. ${ }^{c}$ Liquid phase [20]. ${ }^{d}$ Raman liquid [7]. ${ }^{e}$ Ref. [21]. ${ }^{/}$Calculated. ${ }^{s}$ Force constant data communicated by Gunthard [17].

[^2]: ${ }^{a}$ From Raman spectra of dimers in solid state.

